
Preprint submitted to IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Accepted article (Author's version) DOI: 10.1109/TEVC.2022.3153933

1

EDA++: Estimation of Distribution Algorithms with
Feasibility Conserving Mechanisms for Constrained

Continuous Optimization
Abolfazl Shirazi, Josu Ceberio, and Jose A. Lozano, Fellow, IEEE

Abstract—Handling non-linear constraints in continuous opti-
mization is challenging, and finding a feasible solution is usually
a difficult task. In the past few decades, various techniques have
been developed to deal with linear and non-linear constraints.
However, reaching feasible solutions has been a challenging task
for most of these methods. In this paper, we adopt the framework
of Estimation of Distribution Algorithms (EDAs) and propose a
new algorithm (EDA++) equipped with some mechanisms to deal
with non-linear constraints. These mechanisms are associated
with different stages of the EDA, including seeding, learning
and mapping. It is shown that, besides increasing the quality
of the solutions in terms of objective values, the feasibility of the
final solutions is guaranteed if an initial population of feasible
solutions is seeded to the algorithm. The EDA with the proposed
mechanisms is applied to two suites of benchmark problems
for constrained continuous optimization and its performance is
compared with some state-of-the-art algorithms and constraint
handling methods. Conducted experiments confirm the speed,
robustness and efficiency of the proposed algorithm in tackling
various problems with linear and non-linear constraints.

Index Terms—Estimation of Distribution Algorithms, Contin-
uous Optimization, Non-linear Constraints, Seeding, Clustering,
Mapping

I. INTRODUCTION

MOST real world engineering optimization problems are
in continuous domain with nonlinear constraints. In

such problems, dealing with nonlinear constraints is chal-
lenging and usually it is difficult to find feasible solutions.
Constrained optimization problems can be mathematically
represented as:

Minimize F (x) x = (x1, x2, ..., xn)

Subject to Gi(x) ≤ 0 i = 1, ..., ng

Hi(x) = 0 i = 1, ..., nh

xmin < xi < xmax

(1)

where the goal is to minimize the objective function F (x)
with respect to the n dimensional parameter vector x ∈ Rn,

Abolfazl Shirazi is with the Machine Learning Group, Basque Cen-
ter for Applied Mathematics (BCAM), Bilbao, Spain, 48009 (Email:
ashirazi@bcamath.org).

Josu Ceberio is with the Intelligent Systems Group and is a member
of the Computer Science and Artificial Intelligence Department, Univer-
sity of the Basque Country (UPV/EHU), Donostia, Spain, 20018 (Email:
josu.ceberio@ehu.eus).

Jose A. Lozano is with the Department of Computer Science, University of
the Basque Country (UPV/EHU) and the Machine Learning Group, Basque
Center for Applied Mathematics (BCAM), Bilbao, Spain, 48009 (Email:
jlozano@bcamath.org).

while the feasible region is restricted by xmin and xmax as the
vectors for lower and upper boundaries, Gi(x) as the function
for ng inequality constraints, and Hi(x) as the function for
nh equality constraints.

In order to approach constrained continuous optimization
problems, Evolutionary Algorithms (EAs) utilize a variety of
techniques to hold the constraints and return the best possible
solutions. In 2018, Coello [1] taxonomized these techniques in
different categories. The recently developed algorithms utilize
variety of these techniques to handle constraints. For example,
in [2], a mutation operator incorporated with a repair pro-
jection method has been developed to satisfy the constraints.
The presented algorithm is capable of solving optimization
problems with linear constraints. In another research by the
same authors [3], the parameter settings for the proposed
algorithm has been deeply analyzed. A constraint handling
method based on covariance matrix adaptation evolution strat-
egy is presented by Sakamoto and Akimot [4]. In this work,
the focus was mainly toward the invariance to the element-
wise increasing transformation of the objective and constraint
functions and the invariance to an affine transformation of
the search space. Constraint handling techniques based on
differential evolution (DE) algorithms are presented in [5] and
[6]. In [7], the concept of multi-objective approach is utilized
in designing a ranking strategy for handling constraints. Also,
a hybrid surrogate-based-constrained optimization method,
equipped with a new constraint-handling strategy is proposed
in [8] to map the feasible region into the origin of the
Euclidean subspace. Although lots of efforts are made for
achieving a robust technique for handling constraints, finding
feasible solutions is still a challenge in real-world optimization
problems.

Considering these facts, developing novel methods for han-
dling constraints, which are independent from the problem and
are robust to any types of constraints (equality, inequality,
linear, non-linear, etc.) is a need in the literature. In this
research, several mechanisms for estimation of distribution
algorithms (EDAs) [9] are proposed for handling constraints.
EDAs are a class of EAs that work based on probabilistic
models [9]. In an EDA, a probabilistic model is learned at each
iteration and new solutions are sampled from that model. The
obtained solutions have similar characteristics as those used
for learning the model. One of the characteristics of EDAs is
to have an explicit description of the promising solutions in
terms of probabilistic models. Due to this feature, they have a
great potential for enhancement toward further improvements.

https://doi.org/10.1109/TEVC.2022.3153933

2

This characteristic is the main motivation in this research and
the effort here is to enhance the mechanisms of EDAs for
handling constraints. In recent years, there have been some
efforts in developing probabilistic models that only generate
feasible solutions regarding specific t ypes of constraints [10].
However, up to now, the developments were only applicable
in combinatorial optimization [11]. In this paper, the main
contribution is to present a new concept toward EDAs for
handling constraints. In this regard, two of the mechanisms
in EDAs, including SEEDING and LEARNING, have been
enhanced and one additional mechanism, called MAPPING,
have been developed in this research. Having these new mech-
anisms, the optimization process is modified towards satisfying
the constraints, while minimizing the objective function.

This article is organized as follows. In Section II, an
overview of the proposed algorithm is presented, where the
mechanisms associated with the seeding, learning and mapping
stages are briefly i ntroduced. The next sections describe each
of these mechanisms in detail. Section III is dedicated to
the enhanced seeding mechanism. The learning mechanism
based on feasibility conservation is elaborated in Section IV.
In Section V, the mapping mechanism is explained. The results
of the numerical experiments are provided in Section VI
along with comparisons with state-of-the-art algorithms and
methods. Conclusions are provided in Section VII.

II. OVERVIEW OF THE PROPOSED ALGORITHM

EDAs are a type of population-based evolutionary algo-
rithms designed for solving numerical optimization problems.
Based on machine learning techniques, at each iteration,
EDAs learn a probabilistic model from a subset of the most
promising solutions, trying to explicitly express the interre-
lations between the different variables of the problem. Then,
by sampling the probabilistic model learned in the previous

Algorithm 1: Overall pseudo code of EDA++
Input: F (x), Gi(x), Hi(x), xmin, xmax
Parameters: N, im , ε, γ, S, τ, α, λ,Nδ , MapType

1 CONSTRUCT C(x) FROM [Gi(x), Hi(x), ε]
2 [x,c,i] ← SEEDING(C(x),xmin,xmax,N ,im,γ,S,τ)
3 f ← EVALUATION(x,F (x))
4 while i < im do
5 [xsel, fsel] ← SELECTION(x,f ,γ)
6 [Φ, φ] ← LEARNING(xsel,fsel,C(x), α,λ)
7 xsam ← SAMPLING(Φ,φ,N)
8 xrep ← REPAIRING(xsam,xmin,xmax)
9 xmap ← MAPPING(xrep,Φ,φ, C(x),Nδ ,MapType)

10 fmap ← EVALUATION(xmap,F (x))
11 [x, f] ← REPLACEMENT(xmap,fmap,x,f)
12 EXTRACT [xbest, fbest] FROM [x, f];
13 UPDATE i
14 if stopping criteria are met then
15 BREAK;

16 EXTRACT [xbest, fbest] FROM [x, f];
Output: xbest, fbest

iteration, a new population of solutions is created. In the other
words, EDAs work based on two major key methods: learning
and sampling, where a probabilistic model that estimates the
probability distribution of the selected solutions is learned and
then utilized for sampling new individuals [9]. However, in
constrained continuous optimization, there are no guarantees
that the newly obtained solutions satisfy the constraints of the
problem. As previously mentioned, the mechanisms proposed
in this work are introduced in the framework of EDAs, named
EDA++. The overall pseudo code of the proposed algorithm
is in Algorithm 1.

Following the pseudo code of Algorithm 1, the overall
optimization process is as follows. In EDA++, the optimization
process starts by forming the function C(x) for measuring the
infeasibility of solutions as the constraint violation:

C(x) =

∑ng

i=1 Ĝi(x) +
∑nh

j=1 Ĥj(x)

ng + nh
(2)

with Ĝi(x) and Ĥj(x) defined by:

Ĝi(x) = max(0, Gi(x)) (3)

Ĥj(x) =

{
|Hj(x)| |Hj(x)| > ε

0 |Hj(x)| ≤ ε
(4)

where ε is the error margin for equality constraints. Having N
as the population size, i as the function evaluation counter, and
im as the maximum number of function evaluation, the SEED-
ING mechanism is utilized to generate an initial feasible popu-
lation. Having the initial feasible solutions, with corresponding
objective values f obtained from EVALUATION, the main
optimization loop starts. At each iteration, the algorithm begins
by selecting the top promising individuals in the current
population according to the SELECTION method. Truncation
selection method [9] is used in this research, with γ as the
truncation factor. Having the selected population xsel and
the corresponding objective values fsel, a probability model
is learned via the LEARNING mechanism. In the proposed
learning mechanism, the selected population is divided into
several clusters of solutions (Φ and φ) with respect to their
constraint violation. Then, a mixture of models is learned,
one component on top of each cluster, in such a way that
the probability of sampling feasible solutions becomes high.
Having the mixture of models, new solutions are sampled
via the SAMPLING method as xsam. The REPAIRING
method simply refines the newly sampled solutions based on
the vectors of boundaries xmin and xmax. This is done by
replacing the out-of-bound solutions with the boundaries of
decision variables as:

x = max(x̂, xmin) (5)
x = min(x̂, xmax) (6)

where x̂ is the out-of-bound solution, and xmin and xmax are
vectors of lower and upper boundaries of the decision variables
respectively. It is noteworthy that this strategy might favor

3

the problems with optimal solutions located in the boundaries.
Up to this point, the obtained solutions xrep are likely to be
inside the feasible region thanks to the seeding mechanism
and the proposed learning mechanism, which is intended
to generate feasible solutions. However, despite doing that,
the algorithm sometimes generates infeasible solutions. As a
result, a MAPPING mechanism guarantees the feasibility, and
maps all possible infeasible solutions to the feasible region to
form a completely feasible population xmap. After evaluating
the objective value of the obtained solutions, fmap, via the
EVALUATION process, the new individuals are combined
with the individuals from the previous population, and the
REPLACEMENT mechanism is invoked to form the new
population and the corresponding objective values f in the
current iteration. Population aggregation method is used for
this mechanism in this research. As described, the overall con-
cept of optimization process is toward building probabilistic
model based on feasible solutions. Therefore, obtaining the
initial feasible solution is a key step in the algorithm.

During the optimization process, the counter for function
evaluation is updated in every iteration, according to the num-
ber of objective/constraint function calls within the proposed
mechanisms. The process continues until at least one stopping
criteria is met or the function evaluation counter reaches
the maximum allowable limit. As explained, EDA++ benefits
from three newly developed mechanisms, which are distinct
from the typical EDAs. These mechanisms, including seeding,
learning and mapping, are described in detail in the following
sections.

Algorithm 2: Pseudo code of the seeding mechanism
Input: C(x),xmin,xmax,N ,im,γ,S,τ

1 retryF lag ← false ; i← 0
2 while i < im do
3 if i = 0 then
4 x← UNIF. DIST. [xmin,xmax,N]
5 c ← EVALUATION(x,C(x))
6 else if retryF lag = true then
7 retryF lag ← false
8 x1 ← SELECTION(x,c,τ)
9 x2 ← UNIF. DIST. [xmin,xmax,N(1− τ)]

10 x← [x1, x2]
11 c ← EVALUATION(x,C(x))
12 else
13 [xsel, csel] ← SELECTION(x,c,γ)
14 Φ ← LEARNING(xsel,csel)
15 xsam ← SAMPLING(Φ,N)
16 xrep ← REPAIRING(xsam,xmin,xmax)
17 crep ← EVALUATION(xrep,C(x))
18 [x, c] ← REPLACEMENT(xrep,crep,x,c)

19 UPDATE i
20 if max(c) = 0 then
21 BREAK;
22 if REMINDER(i, S) = 0 then
23 retryF lag ← true;

Output: x, c, i

III. SEEDING

Providing initial feasible solutions is a priority in EDA++.
The aim of the seeding mechanism is to ensure that the initial
population is feasible regardless of the objective value of the
solutions. The initial population containing only feasible solu-
tions may be available and seeded to the algorithm initially. In
this case, the seeding mechanism is skipped. However, if no
initial feasible population is provided, the seeding mechanism
is invoked. The pseudo code of this mechanism is shown in
Algorithm 2.

As shown, the seeding mechanism includes an iterative
optimization process based on a multivariate Gaussian EDA
that considers the constraint violation function C(x) in Eq.
2 as the temporary objective function. In this process, first
an initial random population is created based on a uniform
distribution of solutions within the boundaries of xmin and
xmax. Then, the amount of constraint violation of the popula-
tion is evaluated and if any infeasible solution exists within the
population, the mechanism performs the multivariate Gaussian
EDA to minimize the constraint violation. Other EDAs could
be used as well, including the one with the advanced Gaussian
model, which is described in the next section. This iterative
process stops when all of the solutions in the population
are feasible. Also, this process restarts every S number of
iterations, while saving the high quality solutions in terms of
constraint violation. In the case of a restart, the top τ fraction
of the solutions with lowest constraint violation is saved and
added to a new population of solutions with random uniform
distribution. The search for the initial population of feasible
solutions using this mechanism is a fundamental step. The
success of this process relies on the complexity of the problem
constraints. Finding feasible solutions has more priority over
minimizing the objective function in this algorithm and if the
seeding mechanism manages to find enough feasible solutions,
the highest performance of the algorithm will be achieved.
The mechanism continues searching for feasible solutions
until enough solutions are obtained or the maximum function
evaluation limit is reached.

IV. LEARNING

Having a feasible population, obtained from the seeding
mechanism, the main loop of the optimization starts. A se-
lection of high quality feasible solutions, xsel, along with
their corresponding objective values, fsel, is chosen from
the current population, and these are used to estimate the
parameters of the probability model. The pseudo code of the
learning mechanism is shown in Algorithm 3.

The main idea of the learning process is based on utilizing
a mixture of Gaussian distributions as a probabilistic model
whose density function is formalized as:

f(x) =
N∑
k=1

πkfk(x|µk,Σk) (7)

where each fk(x|µk,Σk) component of the mixture is a
multivariate Gaussian distribution, and µk and Σk are the
mean value (the centroid) and the covariance matrix of the

4

(a)

(b)

(c)

 ! !

 "

Fig. 1. Clustering the selected population within the learning mechanism

k model for k = 1, . . . , N respectively, with πk as the mixing
coefficient for the kth component.

In the proposed learning stage, the Gaussian mixture model
is constructed in two steps. The first step consists of finding
the minimum number of mixture components in which all the
centroids (µk) are placed inside the feasible region. To this
end, an iterative clustering process is developed. This step is
represented in lines 2 to 7 of Algorithm 3 and the scheme of
this process is illustrated in a schematic instance in Fig. 1.

In the plots, the infeasible region due to the constraints
is depicted in black, while the feasible region is illustrated
as the color-mapped area. The selected population is plotted
and different numbers of clusters (k) are considered. In this
research, k–means++ is chosen as the clustering method.
However, other methods could also be considered. In plot
(a), just one cluster is considered (k = 1) and thus there is
one centroid, which is the mean value of the population. As
can be seen, in this case the centroid resides in the infeasible
solution, and this probabilistic model does not therefore meet
the requirement of satisfying the constraints as the sampled
solutions will be mostly in the infeasible region. In plot (b),
the population is divided into two clusters (k = 2). The
positions of the centroids indicate that one of them is inside
the feasible region, while the other one is not, leading to the
conclusion that this mixture model is also not suitable for
constraints satisfaction. Considering three clusters (k = 3),

Algorithm 3: Pseudo code of the learning mechanism
Input: xsel,fsel,C(x), α,λ

1 Nsel ← size(xsel)
2 for i← 1 to Nsel do
3 [ι, µ] ← kmeans(xsel,i);
4 cµ ← EVALUATION(µ,C(x))
5 if max(cµ) = 0 then
6 BREAK;

7 CONSTRUCT Φ FROM [µ, xsel(ι)] ; Nc ← size(Φ)
8 for i← 1 to Nc do
9 EXTRACT [x̂, f̂ , µ̂, σ̂] FROM Φ(i)

10 [x̂sel, f̂sel] ← SELECTION(x̂,f̂ ,α)
11 d← ||x̂sel − µ̂|| ; j ← 0
12 if d > λ× σ̂ then
13 j ← j + 1

14 CONSTRUCT φ̂ FROM [µ̂, x̂sel] ; φ(j)← φ̂

Output: Φ, φ

yields plot (c) in Fig. 1. As can be appreciated, all centroids are
inside the feasible region. Therefore, the mixture of Gaussian
distributions model is learned by calculating the maximum
likelihood estimators of the parameters of the components in
this mixture, using the solutions in the respective clusters.
Since all of the centroids are feasible in this case, any solution
that is going to be sampled is likely to be inside the feasible
domain.

This process is the first loop in Algorithm 3, representing
the first step of the learning process. The obtained number
of clusters, Nc, in this scenario is the minimum number of
clusters with feasible centroids. Finalizing the process, the
components Φ, referred to as the parent clusters, are extracted,
which contain corresponding solutions x̂, objective values f̂ ,
centroids µ̂ and covariances σ̂. Although it is possible to
continue increasing the number of components and obtain
other mixtures of Gaussian distributions, the computation time
will increase without any actual necessity as the objective is to
find a minimum number of mixture components with feasible
centroids. The main benefit of such a process is that having all
of the centroids (µ̂) from the components inside the feasible
region significantly reduces the chance of sampling infeasible
solutions later on during the sampling process.

The described learning process satisfies the primary re-
quirement for sampling feasible solutions. However, when
the mapping mechanism (explained in the next section) is
applied to the model that has been created based on this
learning process, the covariance matrix tends to shrink, i.e.,
it loses diversity. This effect reduces the convergence rate of
the optimization process. To overcome this drawback, in the
next step of the learning process, more components are added
to the model. This step is to compensate the covariance loss
due to the mapping mechanism that is going to be used in the
algorithm [12] after the sampling stage. In this step, for each
component Φi, first, the top α percentage of the best solutions
(x̂sel and f̂sel) are selected. Then, the selected set of solutions
is analyzed to see if they have outliers using the Z-score outlier
detection method [13]. This method is represented as:

||x̂sel − µ̂||
σ̂

> λ (8)

where λ is the distance threshold from the centroids µ̂.
According to this mechanism, if an outlier solution is at the
top α percentage of the best solutions, it will be considered as
the centroid of a new component in the mixture φ̂, referred to
as an outlier-based cluster. For the newly formed components,
we assume an independent multivariate Gaussian distribution,

5

New Variance Main centroid

Outlier (New Centroid)

Outlier (New Centroid)

New Variance

Fig. 2. Formation of outlier-based clusters within the learning mechanism

where the variance of each dimension is calculated as half of
the distance from the initial centroid in each component. The
illustration of this approach in a schematic instance is shown
in Fig. 2 and in lines 8 to 14 of Algorithm 3.

As shown in this instance, the selected population inside the
feasible region is depicted along with the corresponding cen-
troid. According to these parameters, two outliers are detected
that have the objective function values above a predefined
threshold in this population, and they are therefore considered
as the centroids for two new components in the mixture. The
variance of the independent multivariate Gaussian distributions
for each newly generated component is considered as half of
the distance from the outlier to the centroid in the component.
Overall, a mixture model of three Gaussian models is deter-
mined in this iteration: one initial component (parent cluster)
and two additional components (outlier-based clusters) due to
outliers. It is noteworthy that outlier-based clusters are formed
regardless of the number of parent clusters. The aim of outlier
based clusters it to increase the quality of the parent clusters
and compensate unwanted covariance shrinking caused by the
mapping mechanism, which will occur after sampling new
individuals. Overall, Gaussian mixture distribution is formed
based on the maximum likelihood estimation in each cluster,
the sampled population is more likely to have solutions inside
the feasible domain since the centroids are feasible.

V. MAPPING

Although the proposed learning mechanism generates mix-
ture components with mean values inside the feasible region,
when sampling, it is still possible that some samples are gener-
ated outside the feasible region. In order to solve this problem,
a mapping mechanism is introduced, which is utilized after
the repairing process. The simple variation of this concept
has been introduced in [14]. The application of this mapping
mechanism in a schematic instance is illustrated in Fig. 3.

The presented plots illustrate the mapping mechanism in one
iteration of the optimization process. As shown, the mapping
method is based on the idea of shifting infeasible points toward
their respective centroid in Nδ number of steps until they enter
the feasible region. As shown in Fig. 3 (a), the probabilistic
model in this iteration is a mixture of two Gaussian models.
New solutions are sampled around the centroids. However, not

all the samples are inside the feasible region. The feasible and
infeasible solutions are marked separately, connected to their
respective centroid. The points are mapped in a deterministic
equally-spaced form toward the centroids, with Nδ as the
maximum number of steps. The amount of displacement in
each step is (µi−xj0)/Nδ , where xj0 is the infeasible solution
to be mapped toward the centroid µi in the ith cluster. As
a result, the distance between the infeasible point and the
respective centroid is divided into Nδ steps. It is worth noting
that, at the final step, the last displacement will be on the
centroid. So, the feasibility is guaranteed no matter what the
number of Nδ is. However, the higher the number of Nδ is,
the more accurate the feasible and infeasible borders that will
be discovered. Note that while moving toward the centroids,
the mapping is stopped as the point enters the feasible region.
The mapped solutions are shown in Fig. 3 (b).

Following the mapping mechanism, it can be highlighted
that the number of solutions to be mapped depends on
the shape and the boundary of the feasible and infeasible
region in the solution domain. The percentage of mapped
solutions is problem dependent and varies by the complexity
of the constraints and other features such as number and type
(equality/inequality) of constraints. Regarding the mapping
mechanism, one can consider different approaches depending
on their non-linear or stochastic nature. In the following,
four alternatives are proposed, represented by MapType in

 Centroids

 Feasible Samples

 Mapped Samples

 Centroids

 Feasible Samples

 Infeasible Samples

(a)

(b)

Fig. 3. The process of shifting infeasible individuals toward the centroids,
(a) Before mapping (b) After mapping.

6

Algorithm 1. The major differences between the proposed
mechanisms and the original basic concept in [14] are the
inclusion of a stochastic behavior and a new heuristic method.

A. Linear Deterministic Mapping
The linear deterministic (LD) mapping is a straightforward

method for shifting the infeasible point toward the respective
centroid. In this method, the distance between the infeasible
solution and the centroid is linearly divided into equal steps.
The infeasible solution is moved from its initial position
toward the centroid with respect to the steps. In each step the
feasibility of the new solution is checked. The process stops
when the shifted solution has entered the feasible region.

This mapping process can be represented as:

xnewj = xj + δ (9)

where xj is the current point within the infeasible region, xnewj

is the new shifted solution towards the respective centroid µi
in the component, and δ is the step calculated as:

δ =
|µi − xj0 |

Nδ
(10)

where Nδ is the selective total number of steps for this
mapping mechanism, and xj0 is the initial position of the
infeasible solution.

B. Linear Stochastic Mapping
The linear stochastic (LS) mapping is similar to LD. The

only difference is that in each step, after obtaining the new
solution, it will also be shifted in a random direction with a
variable radius r as:

xnewj = xj + r × δ (11)

where 0 < r < 1. This forces a random movement of the point
while mapping and may have some advantages depending on
the solution domain as it produces diversity to the search.

C. Bisection Deterministic Mapping
Bisection deterministic (BD) mapping is based on repeat-

edly bisecting the interval defined by the centroid and the
infeasible solution. At each step, the distance is divided in
two by computing the midpoint of the interval as:

δ =
|µi − xj |

2
(12)

The feasibility of the midpoint solution is evaluated. If the
new solution is feasible, the process stops. Otherwise, the
process continues considering the interval between the new
obtained solution and the centroid. This process is similar
to the well-known bisection method in finding the root of a
continuous function, and also the traditional process of binary
search described in [14].

D. Bisection Stochastic Mapping
Likewise, the bisection stochastic (BS) mapping is similar

to BD. The difference is that in each step, after obtaining the
new solution, it will also be shifted in a random direction with
a variable radius 0 < r < 1.

VI. EXPERIMENTS

The proposed algorithm is tested and compared with dif-
ferent constraint handling techniques and state-of-the-art con-
strained optimization algorithms 1. In the first part of the
experiment, the efficiency of the algorithm is verified against
other constraint handling techniques on the well-known bench-
mark suite [15], which contains 13 constrained optimization
problems, and also the proposed mapping mechanisms are
analyzed. In the second experiment, the performance of the
algorithm is compared with state-of-the-art algorithms on CEC
2020 test-suite benchmark [16], which contains 57 non-convex
constrained optimization problems.

A. Common parameters setup

The experiments are conducted on HIPATIA cluster setup of
BCAM, with 18 nodes including 672 cores (Processor Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz) and 3360 GB RAM
for the aforementioned runs. In all of the experiments, the
following predefined parameters are chosen for EDA++ since
tuning the parameters was not the main goal of this research.
The initial parameters of N , M , and ε are set according to
each benchmark. In the seeding mechanism, parameters S and
τ are considered as 100 and 0.2. The truncation factor γ for the
selection method is chosen as 0.5. Within the learning process,
the multivariate Gaussian model is utilized as the component
mixture and k–means++ is used as the clustering method.
The outlier detection parameters are chosen as λ = 1 and
α = 0.01. Within the sampling process, for a new size N
population, several choices exist for the number of samples
for each mixture component. The typical option, which is used
in this research, is to dedicate an equal sample size to each
component (i.e., N/k) for k components. However, this is an
optional choice. Obviously dedicating more samples to the
parent clusters or outlier-based clusters acts as a balancing
parameter for exploration/exploitation behavior of the opti-
mization algorithm. Also, the number of steps for the mapping
mechanism is chosen as Nδ = 10 for all proposed mapping
methods. The type of the employed mapping mechanism will
be specified in each experiment.

B. Part I - Analysis of EDA++ components

In the first experiment, the efficiency of the proposed
algorithm is analyzed with respect to other constraint handling
techniques, combined with well-known EAs. The benchmark
suite consists of 13 constrained optimization problems in the
well-known benchmark of [15]. Since the process of constraint
handling method in EDA++ is based on probabilistic models,
other algorithms with different techniques are considered
for this experiment. In this regard, the performance of the
proposed EDA++ is compared with three algorithms: Genetic
Algorithms (GA), Particle Swarm Optimization (PSO) and
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) [17]. As for the GA, the crossover rate, crossover range
factor, mutation percentage and mutation rate of 0.7, 0.4,

1All materials for the experiments, including the codes and the results are
available at https://github.com/abolfazlshirazi/EDAPP

7

0.3 and 0.2 are chosen, respectively. Also, the PSO is a
vectorized Particle Swarm Optimization with personal learning
coefficient a nd g lobal l earning c oefficients eq ual to 2, and
inertia weight damping ratio of 0.99. For CMA-ES, default
values are used for its parameters as described in [17]. Since
the best parameter selection for the algorithms depends on
each specific p roblem, t hese v alues a re c hosen a rbitrary for
each algorithm. Therefore, it should be highlighted that the
obtained results only hold for the given set of parameters. A
deeper analysis of the robustness of the results based on the
changes of the parameters is left to future works.

Handling the constraints in GA and PSO is based on a static
penalty function with a constant coefficient. S everal penalty
factors, such as 1, 100 and 10000, are tested and the best
performance of GA and PSO was found to be that with the
highest value. The aim of this priliminary test for penalty
factor selection was to make sure that the selected value is high
enough to add sufficient penalty to the objective function due
to the constraint violation for all problems in the benchmark.
In CMA-ES, the resampling technique, as used in [18], was
considered as the constraint handling technique and the best
obtained feasible solution is saved in each iteration.

In the first e xperiment, e ach a lgorithm i s r un 1 0 t imes for
each of the 13 problems of the benchmark. All algorithms
started with feasible initial populations. Also, the same initial
population is considered in the run of each algorithm in order
to have a fair comparison. Considering D as the number
of dimensions in each problem, the population size and the
number of iterations are considered as 20 × D and 30 × D
respectively and no additional stopping criterion is assumed.

A summary of the obtained results is tabulated in Table I. In
this table, the four proposed mapping mechanisms are tested
in EDA++ along with GA, PSO and CMA-ES. The Relative
Best Percentage (RBP) and Average Relative Percentage De-
viation (ARPD) values [10] of the obtained feasible solutions
across 10 repetitions by each algorithm are provided. RBP is
calculated as

Fig. 4. Comparison of the execution times of the algorithms

RBP =min(100× | f̂ − fbest
fbest

|) (13)

ARPD =mean(100× | f̂ − fbest
fbest

|) (14)

where f̂ is the array of obtained solutions out of 10 runs for
each algorithm on a specific problem, and fbest is the global
best solution for the problem found out of all algorithms.

The results for PSO and GA are regarding the penalty factor
of 10000 and as previously mentioned, CMA-ES benefits from
the resampling technique for handling constraints. According
to the obtained results, although none of the algorithms
could find the global optimal solution in all problems, the
performance of the proposed algorithm is competitive against
GA and PSO incorporated with penalty function and CMA-
ES with resampling technique. Comparing the best and mean
values of the final solutions confirms the high efficiency of
EDA++ relative to the others. It is worth noting that unlike
GA, PSO and CMA-ES, EDA++ always returns feasible
solutions. In some cases, GA or/and PSO failed to reach
feasible solutions, even when the provided initial population is
feasible. These cases include 1 run of GA for problem g10, 2
runs of PSO for problem g06 and 4 runs of PSO for problem
g10. On the other hand, the feasibility of the final solution
is guaranteed in EDA++, when the initial feasible solution is
provided.

CMA-ES does not return infeasible solutions as it is as-
sociated with a trigger that returns the best feasible solution
found so far in every iteration after the resampling process.
Evaluating the results for CMA-ES shows that, despite return-
ing feasible solutions in all cases, solutions by CMA-ES have
the lowest quality in comparison to GA, PSO and EDA++.
Considering the quality of the obtained solutions in Table I,
EDA++ is either quite superior or has the same performance
as the other algorithms in finding good feasible solutions.

Analysis of the time burden of the proposed algorithm
is depicted in Fig. 4. In this figure, the boxplot for the
execution time of all algorithms is plotted for each problem.
All runs are considered in this plot, regardless of whether they
achieve feasible or infeasible solutions. Results indicate that
the vectorized PSO has the fastest process, due to the parallel
computing associated with the structure of the code. On the
other hand, the execution time of the proposed algorithm is
competitive with GA and CMA-ES. Also, the variance of
execution time is higher in EDA++. This is due to the fact
that various mapping mechanisms perform several iterations
per each infeasible individual in every generation. Depending
on how the infeasible solutions are distributed, the mapping
mechanism takes variable times. Therefore, the number of
iterations for mapping infeasible solutions toward the respec-
tive centroids makes the algorithm take longer to converge.
However, in exchange for having all feasible solutions by the
proposed EDA, the time burden is acceptable and competitive.

Detailed comparison between the proposed mapping mecha-
nisms is depicted in Fig. 5. In this figure, two kinds of plots are
illustrated for each of the problems. The top graphs are dedi-
cated to the boxplots for the quality of the obtained solution

8

TABLE I
RBP AND ARPD VALUES OF THE FEASIBLE SOLUTIONS OBTAINED AFTER 10 RUNS.

∗ EQUALITY CONSTRAINTS ARE CONVERTED INTO INEQUALITY CONSTRAINTS WITH ε = 10−3 .
† MAXIMIZATION PROBLEMS ARE CONVERTED INTO MINIMIZATION PROBLEMS.

RBP
GA PSO CMA-ES EDA++ (LD) EDA++ (LS) EDA++ (BD) EDA++ (BS)
1 4.007e-09 0.000e+00 1.506e+00 2.728e-07 2.341e-06 3.640e-06 5.424e-06
2† 2.503e+00 4.250e+01 5.011e+01 5.595e+00 0.000e+00 2.157e+01 9.397e+00
3†∗ 2.744e+01 4.757e-01 9.193e+01 1.767e-03 1.866e-03 2.693e-03 0.000e+00
4 1.614e-01 4.306e-06 2.287e-01 1.479e-08 0.000e+00 6.186e-08 1.600e-08
5∗ 2.722e-04 2.722e-04 7.172e-04 0.000e+00 2.706e-07 5.071e-07 1.001e-06
6 1.042e+00 1.477e+00 1.270e+00 1.600e-04 1.333e-04 0.000e+00 5.703e-05
7 8.714e-01 0.000e+00 1.729e+01 1.467e+00 1.037e-01 2.377e+00 1.663e+00
8† 1.448e-14 3.483e-07 0.000e+00 1.448e-14 1.448e-14 1.448e-14 1.448e-14
9 7.073e-03 4.023e-03 7.612e-01 3.866e-03 0.000e+00 7.243e-03 2.722e-04
10∗ 2.779e+00 0.000e+00 8.424e+01 3.064e+00 2.800e+00 7.807e+00 4.204e+00
12† 2.373e-02 3.228e-03 1.511e-01 2.596e-06 2.257e-05 0.000e+00 4.241e-07
12 0.000e+00 2.909e-11 6.822e-07 0.000e+00 0.000e+00 0.000e+00 0.000e+00
13∗ 2.015e-01 2.015e-01 2.278e+02 4.461e-02 4.603e-02 0.000e+00 4.629e-02
ARPD
GA PSO CMA-ES EDA++ (LD) EDA++ (LS) EDA++ (BD) EDA++ (BS)
1 5.817e-09 7.490e+00 3.000e+00 3.485e-05 1.333e+00 1.334e+00 1.333e+00
2† 5.436e+00 5.243e+01 6.313e+01 1.789e+01 1.508e+01 4.101e+01 2.727e+01
3†∗ 5.147e+01 1.522e+00 9.828e+01 1.058e+00 2.745e-01 1.990e-02 5.750e-03
4 4.361e-01 3.207e-05 1.905e+00 3.231e-05 5.874e-06 1.903e-05 2.634e-05
5∗ 7.145e-04 7.145e-04 4.441e+00 4.659e-04 4.460e-04 4.394e-04 4.250e-04
6 9.397e+00 2.882e+00 6.265e+00 2.094e-03 1.880e-03 1.074e-06 2.088e-04
7 2.627e+00 2.218e+00 5.448e+02 5.497e+00 2.758e+00 6.160e+00 7.762e+00
8† 3.765e-14 3.907e-05 8.497e-02 2.028e-14 1.738e-14 2.028e-14 2.172e-14
9 4.303e-02 1.381e-02 1.887e+01 1.718e-02 8.018e-03 2.457e-02 6.055e-03
10∗ 8.236e+00 2.694e+00 1.926e+02 1.666e+01 1.369e+01 2.049e+01 1.650e+01
11 1.007e-01 6.427e-02 2.584e+00 1.134e-03 1.328e-03 1.640e-04 2.484e-04
12† 0.000e+00 4.536e-10 4.144e-03 0.000e+00 5.625e-02 5.625e-02 5.625e-02
13∗ 1.079e+01 1.079e+01 5.696e+03 1.057e+01 1.047e+01 1.040e+01 1.020e+01

Fig. 5. Comparison of mapping mechanisms

and the second graphs include the boxplots for the execution
times of the algorithms. Each boxplot separates the data for
all four aforementioned mapping mechanisms. Results shows
that none of the mapping mechanisms outperforms the rest
in all problems. Therefore, the efficient mapping mechanism
depends on the type of the constrained optimization problem.

C. Part II - Comparison with the state-of-art algorithms

In this experiment, we focused on the benchmark of CEC
2020 competition for real-world single objective constrained
optimization[16]. This benchmark consists of 57 problems
in six categories of problems including industrial chemical
processes (1 to 7), process synthesis and design problems (8
to 14), mechanical engineering problems (15 to 33), power
system problems (34 to 44), power electronic problems (45

9

to 50), and livestock feed ration optimization (51 to 57). An
overview of the features of the problems in this benchmark
is shown in Fig. 6. This figure s hows t he d imension, number
of inequality and equality constraints and the feasibility ratio
(F.R.) percentage 2 of the solution domain for all 57 problems.
As shown, the majority of the problems have zero F.R. per-
centage due to the existence of equality constraints. Even some
of the problems with only inequality constraints have zero
F.R. percentage, since the defined i nequality c onstraints have
a similar effect to equality constraints. Also, two problems
have an F.R. percentage of 100%, which makes them almost
unconstrained problems.

As for the selection of the algorithms for comparison,
several factors are considered as the main criteria in the exper-
imental setup. Independency of the algorithms from external
optimizers and toolboxes is considered as one of the crite-
ria within the experimental setup. Moreover, the algorithms
should not benefit f rom a ny p rior c omputed d ata, s uch as
gradient information of the constraints. Taking these consid-
erations into account, COLSHADE [19], EnMODE [20], and
BP-εMAg-ES [21] are chosen for this experiment. LSHADE44
[22] from CEC 2017 competition and CORCO [23] are also
considered as complementary algorithms. Regarding this, the
maximum allowable function evaluation for each problem is
considered as:

MAXFEs =

1× 105 D ≤ 10

2× 105 10 < D ≤ 30

4× 105 30 < D ≤ 50

8× 105 50 < D ≤ 150

106 150 < D

(15)

where D is the dimension of the problem. LD mapping
method is chosen in this experiment and equality constraints
are converted into inequality constraints with a threshold of
ε = 10−4. The population size N for EDA++ is considered as

N = min(200,max(10×D, 50)) (16)

Also, the default values of the parameters are considered
for the rest of the algorithms. According to this setup, each
algorithm is run 25 times for each problem and all of the
solutions are saved. Results are provided in Table II, including

2This feature is measured by evaluating 10000 random inputs, with uniform
distribution between the upper and lower bounds for each problem.

the percentage of feasibility rate (FR) and the mean value of
constraint violations (MV). As can be seen, EDA++ managed
to find at least one feasible solution (non-zero FR) similar
to COLSHADE, LSHADE44, EnMODE and CORCO. In this
regard BP-εMAg-ES has the best performance. However, for
the majority of the problems (1 to 33) EDA++ outperforms
BP-εMAg-ES in terms of FR percentage. Moreover, for the
rest of the problems, EDA++ has competitive performance
with CORCO, COLSHADE, and EnMODE. The same results
can be observed regarding the MV values. Superior perfor-
mance has been observed for EDA++ in most of the problems
(2-6, 8-10, 12-15, 17-24, 27-33, 44, 45). The performances
of COLSHADE and EnMODE are competitive in this matter
and they are close to EDA++. For the other problems, one
observes a reasonable performance for EDA++ in lowering
the constraint violations.

Besides the FR and MV values, the execution times of
the algorithms are compared in Fig. 7. As the number of
function evaluations is the same for each problem, the relative
difference in the execution times can be analyzed. In this
figure, the logarithmic scale of the execution time of the
algorithms for all of the 57 problems in the 25 executions is
compared. Each plot is dedicated to the problems in a unique
category in this benchmark. As can be observed, CORCO
and EDA++ superbly overpower the rest of the algorithms in
almost every case since they require lower execution time. This
difference is high in problems 34 to 44 and low in problems
15 to 33. It is worth noting that COLSHADE generally has
the highest execution time in all of the categories except the
last one, in which BP-εMAg-ES is the slowest algorithm.

Having the execution time and the quality of the obtained
solutions, the efficiency of the algorithms can be analyzed. To
this end, the following efficiency parameter is defined:

Γ(x) =

{
1 + Γc(x) Γc(x) > 0

Γf (x) Γc(x) = 0
(17)

where Γc and Γf are the scaled values of objective function
and constraint violation as:

Γf (x) =
F (x)− Fmin
Fmax − Fmin

(18)

Γc(x) =
C(x)− Cmin
Cmax − Cmin

(19)

where Fmin and Fmax are the minimum and maximum objec-
tive values found by any of the algorithms in the competition

Fig. 6. Features of the benchmark problems in CEC 2020 competition on real-world constrained optimization

10

TABLE II
COMPARISON OF FEASIBILITY RATE (FR) AND MEAN VALUE OF CONSTRAINT VIOLATION (MV) OF THE ALGORITHMS IN CEC 2020 BENCHMARK

FR MV

E
D

A
++

B
P-
εM

A
g-

E
S

C
O

L
SH

A
D

E

L
SH

A
D

E
44

E
nM

O
D

E

C
O

R
C

O

E
D

A
++

B
P-
εM

A
g-

E
S

C
O

L
SH

A
D

E

L
SH

A
D

E
44

E
nM

O
D

E

C
O

R
C

O

1 28 80 0 4 100 0 2.01e-03 1.00e+01 1.89e-01 3.10e-03 0.00e+00 1.02e+05
2 100 44 100 100 100 100 0.00e+00 2.28e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 100 64 100 100 100 4 0.00e+00 8.95e+02 0.00e+00 0.00e+00 0.00e+00 8.25e+01
4 100 100 100 100 100 84 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.09e-04
5 100 52 100 100 100 0 0.00e+00 1.77e+01 0.00e+00 0.00e+00 0.00e+00 1.93e+01
6 0 20 0 0 0 0 5.58e-01 1.58e+00 6.90e-02 1.66e-01 2.22e-01 2.36e+00
7 0 0 0 0 0 0 1.09e+00 6.67e-01 9.98e-02 7.47e-02 3.76e-01 1.38e+00
8 100 60 100 100 100 100 0.00e+00 8.75e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
9 100 88 100 100 100 100 0.00e+00 1.59e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
10 100 80 100 100 100 100 0.00e+00 7.17e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
11 20 80 4 96 100 4 1.25e-01 2.53e-01 9.39e-02 1.25e-01 0.00e+00 2.89e-03
12 100 64 100 100 100 100 0.00e+00 6.15e+01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
13 100 76 100 100 100 100 0.00e+00 2.28e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
14 100 100 100 100 100 84 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 4.06e-01
15 100 92 100 100 100 100 0.00e+00 1.02e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 88 96 100 100 100 100 6.46e-02 6.46e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
17 100 100 100 100 96 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.19e-01 0.00e+00
18 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
20 100 80 100 100 100 100 0.00e+00 5.22e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
21 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
22 100 68 96 100 100 80 0.00e+00 3.98e+00 9.09e+04 0.00e+00 0.00e+00 1.82e+04
23 100 88 100 100 100 100 0.00e+00 1.38e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
24 100 92 100 100 100 100 0.00e+00 9.79e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
25 100 100 100 88 100 100 0.00e+00 0.00e+00 0.00e+00 1.51e-04 0.00e+00 0.00e+00
26 68 20 100 100 100 92 2.30e-02 9.29e+00 0.00e+00 0.00e+00 0.00e+00 5.92e-03
27 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
28 100 88 100 100 100 100 0.00e+00 2.03e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
29 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
30 100 36 100 28 92 100 0.00e+00 8.14e+04 0.00e+00 2.33e+03 6.76e-02 0.00e+00
31 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
32 100 92 100 100 100 100 0.00e+00 1.22e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
33 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
34 0 76 0 0 0 0 4.33e-01 1.33e-02 1.66e-02 4.31e-02 1.46e-01 4.07e-01
35 0 76 0 0 0 0 4.85e+00 5.69e+00 9.99e-02 1.46e-01 1.98e+00 4.30e+00
36 0 80 0 0 0 0 4.54e+00 2.51e-02 1.18e-01 2.94e-01 3.23e+00 1.62e+01
37 0 40 0 0 0 0 2.93e-01 8.32e-02 3.56e-02 5.64e-02 2.44e-01 1.69e-01
38 0 40 0 0 0 0 2.85e-01 6.28e-02 3.81e-02 5.79e-02 1.30e-01 3.99e-01
39 0 36 0 0 0 0 2.79e-01 3.65e-01 3.85e-02 5.84e-02 1.29e-01 3.27e-01
40 0 60 0 0 0 0 8.71e+00 4.69e-01 9.53e-01 1.91e+00 1.56e+00 1.83e+00
41 0 100 0 0 0 0 9.11e+00 0.00e+00 6.71e-01 1.68e+00 7.38e+00 2.40e+01
42 0 60 0 0 0 0 1.55e+01 2.87e+00 9.33e-01 2.10e+00 2.31e+00 4.28e+00
43 0 60 0 0 0 0 1.42e+01 1.52e+00 9.97e-01 2.10e+00 2.80e+00 5.18e+00
44 100 100 100 100 100 100 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
45 100 92 100 100 100 92 0.00e+00 1.22e-02 0.00e+00 0.00e+00 0.00e+00 8.59e-08
46 84 60 100 100 100 88 1.43e-02 3.01e-01 0.00e+00 0.00e+00 0.00e+00 4.94e-03
47 92 84 100 100 100 100 3.82e-03 2.31e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
48 28 84 100 88 88 88 4.82e-02 2.51e-03 0.00e+00 1.33e-02 1.69e-02 1.96e+00
49 32 60 100 100 88 76 2.13e-02 9.61e-04 0.00e+00 0.00e+00 1.55e-02 1.00e+00
50 4 96 88 0 8 48 3.33e-02 6.71e-04 2.66e-03 7.56e-03 1.53e-02 4.09e-01
51 0 0 0 0 0 0 3.82e-02 1.48e-01 2.82e-06 1.57e-05 6.82e-04 1.08e-02
52 88 68 100 100 100 84 1.58e-02 1.50e-02 0.00e+00 0.00e+00 0.00e+00 1.71e-03
53 16 4 100 100 4 0 3.47e-02 4.76e-02 0.00e+00 0.00e+00 5.20e-03 4.54e-03
54 0 0 100 100 0 0 5.76e-02 1.04e+00 0.00e+00 0.00e+00 1.35e-03 9.62e-03
55 0 0 24 0 0 0 1.21e-01 1.93e-02 2.42e-04 3.70e-03 4.94e-03 1.51e-02
56 0 0 0 0 0 0 6.63e-02 2.04e-02 1.13e-03 8.26e-03 1.01e-02 2.53e-02
57 0 4 92 0 0 0 1.93e-01 2.24e-02 1.46e-04 1.95e-03 1.45e-03 1.74e-02

regarding a specific problem. Similarly, Cmin and Cmax are
the lowest and highest constraint violation achieved by any
algorithms for each problem. The defined parameters scale the
objective score Γf and constraint score Γc in the interval of
0 and 1 for each solution. Having these scores, the efficiency
score Γ will be a score within the interval of 0 ≤ Γ ≤ 2.
Regarding this, all feasible and infeasible solutions will be
inside the interval of 0 ≤ Γ ≤ 1 and 1 ≤ Γ ≤ 2 respectively.
Obviously Γ = 0 means that the solution is feasible with the
best objective value found. If 0 < Γ < 1, it shows that the

solution is feasible, but it is not the best solution found in terms
of the objective value. If Γ = 1, it indicates that the solution is
feasible (or almost feasible) with the worst objective value in
comparison to other obtained feasible solutions. If 1 < Γ < 2,
it shows that the solution is infeasible with constraint violation
less than the worst solution found. Finally, Γ = 2 indicates
that the solution is infeasible and it has the highest amount of
constraint violation. The scaled execution time ∆(x) is also
defined as:

∆(x) =
T (x)− Tmin
Tmax − Tmin

(20)

11

Fig. 7. Algorithms execution times in all repetitions

where T (x) represents the execution time in obtaining the
solution x, and Tmin and Tmax are the lowest and highest
execution times between all algorithms for the corresponding
problem.

The defined parameters are scaled scores, and are thus
independent from the problem, and can be used to analyze the
algorithms considering the entire benchmark. This analysis is
shown in Fig. 8. In this figure, each graph is dedicated to an
algorithm, plotting the efficiency score and the execution time
score for all of the 1425 obtained solutions (25 runs for 57
problems). Obviously, the points closer to the origin represent
better solutions in both terms of quality of the solution

(objective value and feasibility) and the execution time. The
border between feasible and infeasible regions (Γ = 1) is
marked with a dashed line. Comparison of the distribution
of points indicates that EDA++ has superior efficiency in
comparison to the other algorithms. In this regard, CORCO
has the efficiency closest to EDA++. Comparing the number
of feasible solutions between CORCO and EDA++ shows that
EDA++ has higher feasible solutions than CORCO. However,
CORCO performs relatively faster. Also, BP-εMAg-ES has the
highest number of points inside the feasible region. However,
it generally has longer execution times in exchange for the
satisfaction of constraints. To be more accurate in this analysis,
the Pareto set of the solutions for each problem is extracted
and plotted in Fig. 9. The reason for this plot is to find
out the group of points that forms the Pareto sets from each
algorithm. In other words, Fig. 9 indicates which algorithm has
the highest number of dominant obtained solutions in terms of
execution time and quality. As can be observed, the majority
of the points correspond to EDA++, while LSHADE44 has
the lowest number of points within the Pareto sets. The most
competitive algorithms in comparison to EDA++ are BP-
εMAg-ES in terms of feasibility and having a fair amount of
dominant solutions with high qualities, and CORCO in terms
of execution time.

VII. CONCLUSION

This paper presented EDA++, a new type of EDA for
constrained continuous optimization. The mechanisms asso-
ciated with the proposed algorithm make it efficient in finding
high quality feasible solutions. The proposed mechanisms in
this research interact with the seeding, learning and mapping
methods within the optimization process. They include a
mixture with feasible centroids, outlier detection and heuristic
techniques for the mapping process. Taking advantage of these
mechanisms, the algorithm has competitive performance in
comparison to other state-of-the-art algorithms in this matter.
Also, it is capable of generating only feasible solutions if
the initial feasible population is provided, regardless of the
type of the constraints or the problem. However, there are
no guarantees that other techniques reach feasible solutions.
The proposed method is generally faster than the state-of-the-
art algorithms including COLSHADE, EnMODE, BP-εMAg-
ES and LSHADE44. However, it consumes more time in
comparison to traditional algorithms, such as GA and PSO,
equipped with typical constraint handling techniques and also
CORCO. Nevertheless, the feasibility of the solutions is a
fair exchange when tackling continuous optimization problems
with hard constraints.

The aim of the research in this paper was to initially fill the
gap in handling constraints with some mechanisms associated
with EDAs. This research can be extended to consider the vast
majority of the characteristics of the proposed algorithm. One
noteworthy point is that the high percentage of the time burden
in the proposed method was due to the mapping process, which
makes further enhancements in this mechanism in continuous
domain a crucial need. Analyzing the percentage of mapped
solutions considering the FR ratio of the problems is a good
subject in this matter.

12

D

G

Fig. 8. Comparison of the efficiency of the algorithm Γ vs the scaled execution time ∆

D

G

Fig. 9. Pareto sets of each of the 57 constrained problems from CEC2020
benchmark regarding 25 repetitions. Colored markers have been used to
highlight the solutions obtained from each algorithm.

ACKNOWLEDGMENT

This research is supported by La Caixa Founda-
tion Fellow-ship, the Basque Government through the
BERC 2022-2025, Elkartek programs (project code KK-
2020/00049), Spanish Ministry of Economy and Competitive-
ness MINECO: BCAM Severo Ochoa excellence accredita-
tion SEV-2017-0718, TIN2016-78365R and TIN2017-82626R
projects, Spanish Ministry of Science PID2019-106453GA-
I00/AEI/10.13039/501100011033, Basque Government con-
solidated groups 2019-2021 IT1244-19.

REFERENCES

[1] C. A. C. Coello, “Constraint-handling techniques used with evolutionary
algorithms,” in Proc. Genetic and Evol. Comp. Conf. Comp. ACM,
2018, pp. 773–799.

[2] P. Spettel, H.-G. Beyer, and M. Hellwig, “A covariance matrix self-
adaptation evolution strategy for optimization under linear constraints,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 3, pp.
514–524, Jun. 2019.

[3] P. Spettel and H.-G. Beyer, “Analysis of the (µ/µi, λ)-σ-self-adaptation
evolution strategy with repair by projection applied to a conically
constrained problem,” IEEE Transactions on Evolutionary Computation,
pp. 1–1, 2019.

[4] N. Sakamoto and Y. Akimoto, “Adaptive ranking based constraint han-
dling for explicitly constrained black-box optimization,” in Proceedings
of the Genetic and Evolutionary Computation Conference, 2019, pp.
700–708.

[5] C. Zhang, A. K. Qin, W. Shen, L. Gao, K. C. Tan, and X. Li, “ε
-constrained differential evolution using an adaptive ε -level control
method,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, pp. 1–17, 2020.

[6] B.-C. Wang, H.-X. Li, J.-P. Li, and Y. Wang, “Composite differential
evolution for constrained evolutionary optimization,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1482–
1495, Jul. 2019.

[7] A. Kumar, S. Das, and R. Mallipeddi, “A reference vector-based sim-
plified covariance matrix adaptation evolution strategy for constrained
global optimization,” IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[8] Y. Su, L. Xu, and E. D. Goodman, “Hybrid surrogate-based constrained
optimization with a new constraint-handling method,” IEEE Transac-
tions on Cybernetics, pp. 1–14, 2020.

[9] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Springer, 2001.

[10] J. Ceberio, A. Mendiburu, and J. A. Lozano, “A square lattice probability
model for optimising the graph partitioning problem,” in IEEE Cong.
on Evol. Comp. IEEE, Jun. 2017.

[11] ——, “Distance-based exponential probability models on constrained
combinatorial optimization problems,” in Proc. Genetic and Evol. Comp.
Conf. Comp. ACM Press, 2018.

[12] C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: a survey of the state of the
art,” Comput. Method Appl. M., vol. 191, no. 11-12, pp. 1245–1287,
2002.

[13] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[14] G. Leguizamón and C. A. C. Coello, “Boundary search for constrained
numerical optimization problems in ACO algorithms,” in Ant Colony
Optimization and Swarm Intelligence. Springer Berlin Heidelberg,
2006, pp. 108–119.

[15] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,” IEEE Trans. Evol. Comp., vol. 4, no. 3, pp.
284–294, 2000.

[16] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and
S. Das, “A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results,” Swarm and Evolutionary
Computation, p. 100693, 2020.

[17] M. Andersson, S. Bandaru, A. H. Ng, and A. Syberfeldt, “Parameter
tuned cma-es on the cec 15 expensive problems,” in IEEE Cong. on
Evol. Comp. IEEE, May 2015.

[18] S. Rodrigues, P. Bauer, and P. A. Bosman, “A novel population-based
multi-objective cma-es and the impact of different constraint handling
techniques,” in Proc. Genetic and Evol. Comp. Conf. Comp., 2014, pp.
991–998.

[19] J. Gurrola-Ramos, A. Hernandez-Aguirre, and O. Dalmau-Cedeno,
“COLSHADE for real-world single-objective constrained optimization
problems,” in IEEE Cong. on Evol. Comp. IEEE, Jul. 2020.

[20] K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M. J. Ryan,
“Multi-operator differential evolution algorithm for solving real-world
constrained optimization problems,” in IEEE Cong. on Evol. Comp.
IEEE, Jul. 2020.

[21] M. Hellwig and H.-G. Beyer, “A modified matrix adaptation evolution
strategy with restarts for constrained real-world problems,” in IEEE
Cong. on Evol. Comp. IEEE, Jul. 2020.

[22] Z. Fan, Y. Fang, W. Li, Y. Yuan, Z. Wang, and X. Bian, “LSHADE44
with an improved constraint-handling method for solving constrained
single-objective optimization problems,” in IEEE Cong. on Evol. Comp.
IEEE, Jul. 2018.

[23] Y. Wang, J.-P. Li, X. Xue, and B. chuan Wang, “Utilizing the correlation
between constraints and objective function for constrained evolutionary
optimization,” IEEE Transactions on Evolutionary Computation, vol. 24,
no. 1, pp. 29–43, Feb. 2020.

